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Moment Closure Hierarchies for Kinetic Theories 
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This paper presents a systematic nonperturbative derivation of a hierarchy of 
closed systems of moment equations corresponding to any classical kinetic 
theory. The first member of the hierarchy is the Euler system, which is based on 
Maxwellian velocity distributions, while the second member is based on non- 
isotropic Gaussian velocity distributions. The closure proceeds in two steps. The 
first ensures that every member of the hierarchy is hyperbolic, has an entropy, 
and formally recovers the Euler limit. The second involves modifying the colli- 
sional terms so that members of the hierarchy beyond the second also recover 
the correct Navier-Stokes behavior. This is achieved through the introduction 
of a generalization of the BGK collision operator. The simplest such system in 
three spatial dimensions is a "14-moment" closure, which also recovers the 
behavior of the Grad "13-moment" system when the velocity distributions lie 
near local Maxwellians. The closure procedure can be applied to a general class 
of kinetic theories. 

KEY WORDS: Kinetic theory; moment closures; hyperbolic systems; 
entropy, BGK. 

1. I N T R O D U C T I O N  

Fluid dynamica l  descriptions of gases rest on  the assumpt ion  that the mean  
free path of a particle (the average distance travelled between collisions) is 
much  smaller than  the macroscopic  length scales of interest. In that case 
the velocity d is t r ibut ion of particles will approach a local equi l ibr ium 
parametr ized by so-called fluid variables (typically the mass density, fluid 
velocity, and  temperature)  whose evolut ion will be governed either by the 
compressible Euler equat ions,  which approximate  the velocity dis t r ibut ion 
by a local equi l ibr ium, or the compressible Navier -Stokes  equations,  which 

account  for small deviat ions of the velocity d is t r ibut ion from a local 
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equilibrium. Such fluid dynamical equations are routinely solved numeri- 
cally to effectively model gases in a variety of applications. However, when 
the basic assumption of fluid dynamics breaks down the deviation of the 
velocity distribution from a local equilibrium may become large and 
Navier-Stokes equations can yield momentum and energy fluxes that are 
inconsistent with nonnegative particle densities and that may even be 
wrong by orders of magnitude. 

Deviations of the velocity distribution from a local equilibrium can be 
modeled by a kinetic theory of dilute gases like that governed by the 
Boltzmann equation. The gas is then described by single-particle phase- 
space densities (one for each species) rather than fluid dynamical variables 
and the evolution of these phase-space densities is then governed by kinetic 
equations. In the fluid dynamical regime of small mean free paths the (com- 
pressible) Navier-Stokes equations can be systematically recovered as the 
first-order correction to the Euler equations by using either a Hilbert or 
Chapman-Enskog expansion. Far outside the fluid dynamical regime one 
may abandon fluid dynamics in favor of the full kinetic model, which may 
be effectively solved via molecular dynamics or Monte Carlo methods 141 at 
low enough densities. However, because of its phase space description and 
numerical stiffness, the computational cost of doing so in regimes near the 
fluid dynamical limit becomes too prohibitive in both time and storage 
requirements to allow for general usage. 

This leaves a gap in our ability to efficiently model gases in the regime 
that lies between free molecular flow and fluid dynamics, the so-called 
transition regime. The objective of this article is to present models that fail 
gracefully as one leaves the fluid dynamical regime. More precisely, we seek 
models that properly capture the fluid dynamical regime when the mean 
free path is much smaller than the macroscopic length scales, while in the 
transition regime they give values for the momentum and energy fluxes 
(and other quantities) that are at least consistent with the nonnegativity 
of the particle density, and are thereby hopeful of the correct order of 
magnitude. By doing so, such models may provide a bridge over the trans- 
ition regime that may be useful in the construction of hybrid fluid/kinetic 
simulations. 

One strategy to describe deviations from fluid dynamics is to close 
systems of moment equations such as typified by the 13-moment closure of 
Grad. ~8~ This strategy introduces dynamical equations for velocity 
moments of the particle distribution beyond those of the conserved mass, 
momentum, and energy densities. The additional equations are not local 
conservation laws, but rather local relaxation laws that include moments of 
the collision operator. Any closure of this enlarged system must 
approximate both the higher flux moments and the collision operator 
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moments. These closures often use relations that are only justified when the 
particle distribution is near a local equilibrium, such as Grad's moment 
truncation of the fluxes in terms of generalized Hermite polynomials 
relative to the local Maxwellian, and his so-called "diagonal approxima- 
tion" of the collision operator. The resulting systems of equations involve 
shorter spatial-temporal scales, but retain the assumption of closeness to 
the local equilibria, thereby taking on a perturbative nature. 

Such systems of moment equations present many problems that must 
be faced if they are to be useful tools for simulation in the transition 
regime. The most significant of these problems are: (1) complexity due to 
the large number of equations, (2) stiffness near the fluid dynamical limit, 
(3) loss of realizability of its predicted moments, and (4) breakdown away 
from moderate regimes. The first problem is intrinsic to this general 
strategy and carries a substantial computational cost for any simulation. 
This problem is being mitigated by advances in supercomputers. The 
second is also intrinsic but can be resolved by a proper choice of numerical 
scheme.('-4~third problem is more serious because it means that the pre- 
dicted values of the moments can evolve to the point where they violate 
inequalities that must be satisfied if they are to be realized by any non- 
negative density. This problem can be monitored by checking that the 
predicted moments satisfy appropriate inequalities during a simulation. The 
last problem arises because such systems can dynamically become elliptic 
(develop complex characteristics) and hence become ill posed, after which 
the meaning of the solution becomes suspect. 

This paper presents a systematic nonperturbative derivation of a whole 
hierarchy of closed systems of moment equations corresponding to any 
classical kinetic theory. The first member of the hierarchy is the Euler 
system, which is based on Maxwellian velocity distributions, while the 
second closure is based on nonisotropic Gaussian velocity distributions. 
The closure procedure has two steps. The first ensures that every member 
of the hierarchy is hyperbolic, has an entropy, and possesses realizability of 
its predicted moments, thus ensuring that, unlike the perturbative 
approach, difficulties such as (3) and (4) above do not arise. Moreover, 
every member formally recovers the Euler limit. The second step involves 
a modification of the collisional terms that is a nonlinear generalization of 
the "diagonal approximation" of Grad and which ensures and those mem- 
bers of the hierarchy beyond the Gaussian closure recover the correct 
Navier-Stokes behavior. The simplest such system in three spatial dimen- 
sions is a "14-moment" closure which also recovers the Grad "13-moment" 
system when the velocity distributions lie near local Maxwellians. 

The remainder of this paper is organized as follows. Section 2 
abstracts the salient structures associated with classical kinetic equations, 
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thereby providing a simple general framework for the subsequent theory. 
Section 3 reviews classical fluid dynamical descriptions, including the Euler 
limit and the Navier-Stokes approximation, and discusses their 
breakdown. Section 4 presents the first step of the moment closure 
prescription and proves the corresponding claims made in the last 
paragraph. Section 5 works out the case of the Gaussian closure. Section 
6 examines the collisional terms for higher order closures. It then intro- 
duces a generalization of the BGK collision operator, thereby completing 
the second step of the closure prescription. Section 7 indicates the 
generalization of this theory to more general kinetic equations. Finally, 
Section 8 gives a concluding discussion. 

2. CLASSICAL KINETIC EQUATIONS 

This paper will treat as illustrative the case of a gas composed of a 
single species of identical classical particles contained within a fixed spatial 
domain/2 c II~ D. Kinetic theories describe such a gas through the evolution 
of a nonnegative density F =  F(t, x, v) over the single-particle phase space 
/2 x R D. This evolution is usually governed by a kinetic equation of the 
form 

O,F + v. V.,.F= ~(F) (2.1) 

where the collision operator F~-+ Cg(F) acts only on the v dependence of F 
locally at each (t, x). The exact nature of the domain /2 as well as any 
associated boundary conditions play a minor role in what follows, and so 
will remain unspecified. More general kinetic systems will be discussed in 
Section 7. 

The integral of any scalar or vector-valued measurable function 
f = f ( v )  over the D-dimensional Lebesgue measure d~ will be denoted by 
( f ) ;  thus 

( f )  = I f ( v )  d D (2.2) 

All functions in this paper are understood to be Lebesgue measurable in all 
variables. 

The collision operator ~ is assumed to be defined over a domain ~(cg) 
that is contained within the cone of nonnegative functions of v. It will be 
assumed that ~g possesses three properties, discussed below, that relate to 
dynamical conservation, dissipation, and symmetry, and which are shared 
by a wide variety of classical collision operators. 
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First, the operator ~r is assumed to have 1, v and Iv[ 2 
conserved quantities; this means 

( c g ( f ) )  =0,  (vCd(f)) =0,  ( lv['- ~g(f)) = 0  

as locally 

for every f e ~ ( c g )  (2.3) 

Moreover, it is assumed that every locally conserved quantity is a linear 
combination of these three, so that for any g=g(v) the following 
statements are equivalent: 

(i) ( g ~ ( f ) )  = 0  for every f e ~ ( c g )  
(2.4) 

(ii) g ~ : - s p a n { 1 ,  v,, v_,,..., vo, Ivl-'} 

The relations (2.3) represent the physical laws of mass, momentum, and 
energy conservation during collisions and (2.4) states that there are no 
other conservation laws. A consequence of (2.3) is that solutions of the 
kinetic equation (2.1) formally satisfy the local conservation laws 

O,( F) + V.,.. ( vF) = 0  

O,(vF) + V.,_. (v v vF) = 0  (2.5) 

O,( �89 Ivl'- F)  + V,.. ( �89 Ivl'- vF)  = 0 

corresponding to mass, momentum and energy conservation respectively. 
Here v denotes the symmetric tensor outer product that acts on a sym- 
metric k-tensor and a symmetric /-tensor by symmetrizing their usual 
tensor outer product. 

Second, the operator cg is assumed to satisfy the local dissipation 
relation 

( l o g f ~ ( f ) )  ~<0 forevery f e N( c g )  (2.6) 

The quantity on the left of (2.6) is the so-called local entropy dissipation 
rate. The local equilibria of cd are assumed to be characterized by the 
vanishing of the local entropy dissipation rate and to be given by the class 
of Maxwellian. densities, i.e., those of the form 

Iv - ul'-) P exp (2.7) 
f =  ~(p,  u, 0) - (2~0)D/2 20 

for some (p, u, 0 ) e N +  x NDx N+. More precisely, for every f eN(cg )  the 
following statements are assumed to be equivalent: 
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(i) (log fog( f ) )  = 0 

(ii) ~'(f) = 0 (2.8) 

(iii) f is a Maxwellian density given by (2.7) 

These assumptions about g merely abstract some of the consequences of 
Boltzmann's celebrated H-theorem. Relation (2.6) implies that solutions of 
the kinetic equation (2.1) formally satisfy the local dissipation law 

O , ( F l o g F - F )  + V . , . . ( v ( F l o g F - F ) ) = ( I o g F C g ( F ) )  <~O (2.9) 

corresponding to entropy dissipation. In this paper we adopt the sign con- 
vention of diminishing entropy, which, while at variance with much of the 
physics literature, is both mathematically and physically more natural. 

Third, the operator (g' is assumed to commute with translational and 
orthogonal transformations. Specifically, given any f = f(v), then for every 
vector w~ R ~ and for every orthogonal matrix O~R ~215176 define trans- 
formed functions ~ , f  and ~, , f  by 

,Y-7,,f =~, , f (v)= f (v--u) ,  .Y--of =J~,f(v)=- f(Orv) (2.10) 

It is assumed that if f is in @(c6), then so are .~,f  and ~,,,f with 

~,~,(f )  = cg(~,.f), ,y-ocg(j.)=cg(~,f) (2.11) 

This relation reflects the Galilean invariance of the microscopic collisional 
dynamics and implies that when f2=R ~ the kinetic equation (2.1) for- 
mally retains Galilean invariance. Specifically, whenever F=F( t , x ,  v) 
satisfies (2.1), then, for every vector u e R  ~ and orthogonal matrix 
O e R ~215 so do the actions of the Galilean group on F, 

~,F=s~,,F(t, x, v) - F(t, x - u t ,  v - u )  
(2.12) 

doF= ~,F( t, x, v) =- F( t, Orx, Orv) 

Of course, the set of solutions of (2.1) is also invariant under space and 
time translations. 

In addition to the three properties of ~' discussed above, it will be 
assumed that for a given and absolute equilibrium d' (independent of space 
and time) the linearization of the kinetic equation (2.1) about F =  g has 
analogous structural features. Formally setting F =  6( 1 + 6g) into (2.1) and 
dropping terms of order b2 results in the linearization 

O,g + v. V.,.g + LPxg=O (2.13) 
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where Lee is defined to act linearly on g=g(v) by 

1 1 + 6 g ) )  ~ o Leeg = -~DCg(8)  8'g= - a~g(g(1 (2.14) 

The operator Lee is assumed to be closed and densely defined with domain 
~(Lee) in H~r, the Hilbert space with the weighted inner product 
(h ] g)e = (h,~g)). Typically, the linearized kinetic equation (2.13) is well- 
posed over He and, as for the case of the Boltzmann equation, is related 
to the initial-value problem for (2.1) through the notion of entropic con- 
vergence.(26) 

Some properties of Lee follow formally from those of cg. First, differen- 
tiating the relation ~(g(p,u,O))=O with respect to an arbitrary 
parametrization of (p, u, 0) leads to the relation 

Lee ~ = - -~  Dog(~) d' = 0 (2.15) 

where by (2.7) the logarithmic derivative of er = g(p, u, 0)is 

/~+ (v -u ) . z i  / I v - u , ' - D ) ( J  
~ = p  0 + t  2-ff 0 (2.16) 

Considering the variations fi, ~, and 0 as independent shows that the space 
of locally conserved quantities IF defined in (2.4) is contained in ~,e'(Lee), 
the null space of Lee. Second, applying the definition (2.14) of Lee to the 
local conservation relations (2.3) shows that 

(8'Leeg) =0  (v~Leeg) =0, (Ivl2 gLe~g) =0 

for every g ~ ~(Lee) (2.17) 

This implies that Ec~,ln(LeJ ), where LeJ is the adjoint of Lee over He 
with domain ~(Lee* ). Third, taking the second variation of the dissipation 
relation (2.6) gives 

(g'gLeeg) = --�89 1 +~g))(s +~g)))l~=o~>0 (2.18) 

whereby it follows that geJV(Le e +Lee* if and only if (gd~ 
which then implies 

JV(Lee)= ~,V(LeJ ) c Jlr(,,c...fe +Le~ ) (2.19) 

By the inferences fi'om (2.16) and (2.17) above, IF is a subset of each of 
these spaces. 
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We shall assume that ~(LPe* ) = ~ ( s  and that all the above inclu- 
sions are equalities. More precisely, for every g e ~ ( ~ e )  the following 
statements are assumed to be equivalent: 

(i) (gdo-+'eg) = 0 

(ii) s  

(iii) ~ g = 0  

(iv) g~  E 

(2.20) 

An important special case which includes all classical collision operators is 
when ~ e  is self-adjoint ( .~J = ~e) .  In this case (2.18) implies that (i), (ii), 
and (iii) in (2.20) are always equivalent, so the only assertion in (2.20) is 
the equivalence of (iv) to the others. 

In addition, it shall be assumed that &o satisfies the Fredholm alter- 
native ~(s E• where ~(s denotes the range of s Specifically, 
this means we are assuming that ~ ( ~ a  ) is closed, a property that does not 
hold for all classical collision operators, but does hold for that of 
Boltzmann in the case of Maxwell molecules or hard potentials with an 
angular cutoff. ~71 One could include the case of the soft potentials if the 
Fredholm assumption is replaced with the weaker one that ~,~ satisfies the 
Fredholm alternative in a space that is appropriately related to H e,~ ~4~ but 
for simplicity we will not do so here. 

The Fredholm alternative implies that the equation . ~ s g = f  has a 
solution if and only i f f E  E • in which case there is a unique solution in IF J- 
denoted by g = 5~c~ 7 ~ f Let ~8 be the orthogonal projection of H ~ onto E, 
which acts on g=g(v)  as 

(v - u)( (v - u) d~ 3~eg= 1 (o~g) + 
p 0 

+ ( , V 2 o I - '  D ) 2 ( ( l V 2 o I Z  D ) d o g ) ]  (2.21) 

The operator s is the unique bounded psendoinverse of ~ e  such that 

~ e  s = , / - ~ e ,  ~ 7 '  s c J - - ~ e  (2.22) 

where J -  ~ is the orthogonal projection of H e onto E • The dissipation 
relation (2.18) ensures that the quadratic forms associated with ~ and 
&~ enjoy the positivity properties: 

<gdoSfleg)>O for every nonzero g e E• c~ ~(.~Pe) 
(2.23) 

( g d o ~  g )  > 0 for every nonzero g ~ E • 
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In the case that L~'~ is self-adjoint this means that s and SaT~ are 
positive definite over E • 

Finally, fix a local equilibrium g = d'(p, u, 0). Every orthogonal matrix 
O e It~ D• o defines the transformation (',, = J"~,.Yo ~ , - l ,  where .~, and .~, are 
defined by (2.10). It is easily checked that ~~ and that C,, is an 
orthogonal transformation over I~ ~. Linearizing the commutation relations 
(2.11) about ,~ shows that for every orthogonal matrix O e R  ~215176 if 
ge~(&a~),  then so is (.~,,g and 

(o,, .2~ g = .8~'~ Cog (2.24) 

In other words, the operator ~q'~ commutes with the orthogonal transfor- 
mations r This symmetry is usually applied in one of two ways. First, 
specializing (2.24) to the case O = - I  shows that the space of all functions 
that are even (odd) in v - u  is invariant under s162 this is the so-called 
even/odd symmetry of ~ .  Second, because the measure d~ is invariant 
under action by any C~, it follows that 

(ggs = (C~ (gg,,LP~g)) = ((Cog) o~,LCe, ~ ,g)  

( g g ~ t  g )  = ((% (go~Zp~-~ g) ) = ( ( (q,g) ,~Sf ~' C g  ) 
(2.25) 

for every orthogonal matrix O �9 ~ D  x D. This so-called orthogonal symmetry 
simplifies the evaluation of many tensors that appear subsequently. 

3. F L U I D  D Y N A M I C A L  D E S C R I P T I O N S  

Fluid dynamical descriptions of the gas are those with an evolution 
governed by the local conservation laws (2.5) in which the phase-space 
density F is approximated in terms of the locally conserved spatial den- 
sities. The local densities are determined by the fluid variables p, u and 0 
through the defining relations 

1' ~ 
( F )  =p, ( v F )  =pu, IvlZg =~plul 2 +~pO (3.1) 

These relations are consistent with the previous usage of p, u, and 0 in the 
formula for the local Maxwellian density (2.7) in that they reduce to iden- 
tities when F is given by (2.7). The local fluxes can then be written as 

(v  v vF) =pu v u+ pOI+ X (3.2a) 

Ivl 2 vF =~p lu l  2 u + ~ p O u  + S u + q  (3.2b) 
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where the stress Z and the heat flux q take on values of a traceless sym- 
metric matrix in ~z~ v o and a vector in R ~ respectively. The local conser- 
vation laws (2.5) become 

8,p + V , . . ( p u ) = 0  

8,(pu) + V,. .(pu v u) + V.,.(pO) + V , . . Z = 0  

D + 2  ,~ 
8, (~ plul2 + D p o )  + V.,. . (~ p[ul2 u + ~ pvu + Zu + q) =0 

(3.3) 

A fluid dynamical closure is then specified by so-called constitutive rela- 
tions that express the stress Z and heat flux q in terms of p, u, and 0 and 
their derivatives, whereby the evolution of (p, u, 0) is then governed by 
(3.3). 

Rather than specifying Z and q independently, one can first solve (3.2) 
for Z" and q in terms of F as 

,S = 04, A F), q = 03/2 (BF)  ( 3.4 ) 

where the dimensionless traceless symmetric D xD-matr ix  A and the 
dimensionless D-vector B are given by 

(v-u)  v ( v - u )  1 I v - u l  2 
A = - -  I (3.5a) 

0 D 0 

20 2 01/2 (3.5b) 

Then a fluid dynamical closure can be specified by choosing an expression 
for F in terms of p, u and 0 and their derivatives. Sometimes this approach 
also yields a local entropy dissipation law from (2.9) that is consistent 
with (3.3). 

The simplest such closure arises upon making the approximation that 
F has the form of the unique local Maxwellian density given by (2.7). In 
this case both the stress Z and the heat flux q vanish identically, thereby 
reducing (3.3) to the Euler equations 

8,p+ V,..(pu)=O 

8,(pu)+V,. .(pu v u)+Vx(pO)=O (3.6) 
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The local entropy dissipation law (2.9) becomes 

O,(pa) + V.,. �9 (pug) <~ 0 (3.7) 

where the specific entropy g = g(p, O) is given by 

, ~  
a = -  ( 6  log g -  eg) = log  (3.8) 

p 2 

Classical solutions of the Euler system (3.6) satisfy (3.7) as an equality, 
while weak solutions (like shocks) that are obtained through a "viscosity 
method" will generally satisfy (3.7) as an inequality (in the sense of dis- 
tributions)/-'sl 

In fact, classical solutions of the Euler system (3.6) satisfy a large 
family of formal local conservation laws in the form 

O,(ph (g)) + V,. �9 (puh (g)) = 0 (3.9) 

where h =h(g)  is any differentiable function over ~. The density ph is a 
strictly convex function of the mass, momentum, and energy densities of 
(3.6) whenever, ~2~ 21~ 

2 
h'(g) >0,  - - h ' ( g ) + h " ( g ) > O  (3.10) 

D + 2  

In that case ph is called a strictly convex entropy density for (3.6) and 
weak solutions satisfy the local dissipation laws 

O,(ph(g) ) + V.,. -(puh(g)) <~ 0 (3.11) 

The choice h(a)=g in (3.11) recovers (3.7). 
Deviations from the local equilibrium approximation can be computed 

systematically using a Chapman-Enskog analysis of the scaled kinetic 
equation 

O,F+ v. V,.F= I ~(F) (3.12) 

where e is a dimensionless number that gives the order of the mean free 
path over the macroscopic gradient length scalesJ 2"7~ The Chapman-  
Enskog expansion of F in powers of e has the form 

"~ (9)  F=g(p,u,O)(1 + e g ~  +e-g-  + ...) (3.13) 
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where the leading order is the local equilibrium given by 

0 P g(p,u, )=(2n~)D/_,exp( Iv-ul~-~2-O / (3.14) 

for (p(t, x), u(t, x), O(t, x)) e ~+ x R D • R+ consistent with (3.1). Placing 
(3.13) into (3.1), the g"" must satisfy the consistency constraint 

<~g'"'> :0 ,  <v~g'"'> :0, (~lvl-~ ,~g""> : 0  (3.15) 

which simply states that each g~"~ belongs to ~• Placing (3.13) into (3.12), 
the g "  at each (t, x) are then expressed locally in terms of (p, u, 0) and 
their spatial derivatives, where time derivatives of the fluid variables are 
eliminated at each order using (3.3). 

The Navier-Stokes approximation involves keeping just the first-order 
correction in the Chapman-Enskog expansion (3.13). It is found that 
g~l e n =• satisfies 

5~,g~,, = - ( J  _ ~ )  v. V,.. d' (3.16) 
g 

where ~ is the orthogonal projection of H,~ onto E given by (2.21). Using 
(2.16) and (2.21), we find that the right side of (3.16) takes the form 

v.V,.d 1 ( 2 ) 1  
( . J - - ~ r  2 A V. ,u+(V, .u)r--~V, . .ul  +~75B-V,.0 (3.17) 

The right side of (3.16) is clearly in IE • and hence in .~(s ) by the 
Fredholm alternative, so its solution can be expressed using the pseudoin- 
verse cp~ ~ and the relation (3.17) as 

g"~=~-' ( J - ~ ) - -  v.V,.g 
d 

1 ( 7-2 ) 1  
=--~s  V,.u+(V,.u) -~V~. . .u I  ---SYj~B.V,.Ooi/2 . (3.18) 

The first-order correction to the local equilibrium approximation is thereby 
linearly proportional to gradients of the fluid variables. 

By using (3.18) in the Chapman-Enskog expansion (3.13) and drop- 
ping all the higher order terms, we obtain the Navier-Stokes approxima- 
tion for F and, as it has served its purpose, discard ~. When this 
approximation is substituted into formula (3,4) and the even/odd symmetry 
of ~ ,  is used to infer that the three-tensors (A~- IB )  and 
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(Bg~C,a~ -~ A) vanish identically, then we are led to the Navier-Stokes 
closure 

1 r 2 Z=O(Agg  ~ )  = ---~O(A~'~7 ~ A)  "(V.,.u+(V.,.u) - -~V , . . u I )  (3.19a) 

q = 03/2(B,~g~ ~) = - O ( B ~ ; - ~ B ) .  V.,.O (3.19b) 

The symmetry of c~' e with respect to orthogonal transformations (2.25) and 
the fact that t r (A)=0 imply that the components of the four-tensor 
( A ~ ' ~  -~ A) and the two-tensor (B~2'~-~B) satisfy the identities 

( A , j g ~ j  ~ Ak/) - -  
( D -  1)(D+2) 

2 6ij6kl) 
< A '  et~fi'~ - l  A) (6ik6jlq-(~il(~jk----" ~ 

1 
( B;d~a~ - '  Bk) = ~ ( B. o~'s ~ B) &;k (3.20) 

Moreover, the only appearance of u in the above integrands is through 
v - u ,  so by the translation invariance of d~ the above tensors depend only 
on p and 0. Therefore, using the identities (3.20), we find that the 
Navier-Stokes closure (3.19) becomes 

( 1 ) 
X = - l l  Vxu+(V. , .u)r -~V. , . .uI  (3.21a) 

q= -KV.,_O (3.21b) 

where the viscosity / t=lt(p,  0) and the heat conduction h'=K(p, O) are 
given by 

1 
/t =0  ( A '  , g ~  ~ A) (3.22a) 

(D-- I ) (D+2)  

1 
h ' = 0 ~  (B .  d ~ - I B )  (3.22b) 

The positivity of/l and 1, is a consequence of (2.23), while the fact they are 
bounded above follows from the boundedness of ~c-eT'. The functional 
independence of It and 1c on u is a consequence of Galilean invariance. 
Whenever cg is homogeneous of degree two in F (as for the classical 
Boltzmann collision operator), then both L-act and d" will be homogeneous 
of degree one in p, whereby It and K will be independent of p as well. 

Fluid dynamics breaks down when the macroscopic gradient lengths 
are comparable to the mean free path of the flow. The viscous stress and 
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heat conduction terms in the fluxes of the usual Navier-Stokes equations 
then become large enough to lead to unphysical effects. One such effect is 
the development of unrealizable values for the moments of the fluid particle 
distribution. This is clearly seen to arise in (3.2a) for the Navier-Stokes 
closure (3.21a), recast as 

((v-u) v (v-u)F) =pOI-p ( V'u+(V'u)r-2 .,..ul) (3.23) 

whenever the expression on the right side of (3.23) is no longer a non- 
negative-definite matrix (the left side being manifestly so). This means that 
the approximation has become so bad that there is no distribution of par- 
ticles that is consistent with the predicted values of the momentum flux 
computed from the fluid variables. A more refined moment realizability 
analysis <271 leads to the requirement of the nonnegative definiteness of the 
dimensionless symmetric D x D-matrix 

I -  VxU q- (Vxu) ---~V.,..uI Dp203VxO(V.,.O) r (3.24) 

In practice, any simulation using the Navier-Stokes closure should be 
suspect whenever the eigenvalues of the matrix (3.24) become significantly 
different than unity. Such a difference would indicate that higher order 
terms in the Chapman-Enskog expansion are becoming important. 
However, the problem of unrealizable moments is not remedied by 
proceeding to the next few higher order terms in the Chapman-Enskog 
expansion 15"34~ (to the Burnett or super-Burnett equations), because if 
those terms are important, then all the remaining ones are, too. The 
fundamental physical difficulty is that the underlying distribution of par- 
ticles has variations on small scales and is therefore far from any local equi- 
librium. 

One strategy to maintain moment realizability within fluid dynamical 
closures involves the introduction of so-called flux-limited closures such as 
was explored in ref. 29 within the context of a discrete-velocity kinetic 
theory, but that is not the approach we will take here. 

4. M O M E N T  C L O S U R E S  

An alternative strategy for describing deviations from local equilibria 
was developed by Grad <~81 based on moment equations. In general, the 
development of moment equations begins with the choice of a finite-dimen- 
sional linear subspace M of functions of v (usually chosen to be polyno- 
mials). Let M be the dimension of this space and {nli=n?i(v)}iMl be a 
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basis. Denote the column M-vector of these basis elements by m = m(v), so 
that every m e  1~ has a unique representation in the form m ( v ) = a r m ( v )  
for some a e EM, where a r is the matrix transpose of the column vector a. 
Now takingthe moments of the kinetic equation (2.1) over the vector m(v} 
leads to the system 

8,( m F )  + V,.. ( vmF) = ( m ~ ' ( F ) )  (4.1) 

It must be noted that it is not even known for the Boltzmann equation 
whether the quantities appearing in this equation are well-defined functions 
for every solution F. However, recent work has shown this to be the case 
for the spatially homogeneous case I~1 (also see refs. 9 and 35) and for the 
nearly homogeneous case, ~1 thereby giving some hope that it might be 
more generally true. For  present purposed we shall suppose these quan- 
tities are well defined and consider system (4.1) formally. The so-called 
"moment closure problem" is then to express the above densities ( m F ) ,  
fluxes ( v m F ) ,  and collisional terms (md : (F ) ) ,  as a function of M 
variables (traditionally the densities themselves), thus formally closing the 
system. 

Moment closures must be devised while remaining mindful that the 
resulting system should be well-posed, respect physical symmetries, yield 
moments that are realized by some nonnegative velocity density of par- 
ticles, and recover the proper fluid dynamical approximations. These goals 
can be achieved in part by requiring that M satisfy the following condi- 
tions: 

(I) E - s p a n { 1 ,  v, Ivl 2} clMl 

(II) I~ is invariant under the actions of.Y~, and .~, 
(4.2) 

The span notation used here in the definition of IE and throughout this 
paper will be applied to a collection of scalars, vectors, and tensors and will 
mean all scalar-valued linear combinations of their components. In par- 
ticular, IF consists of all linear combinations of the scalars 1 and Iv] 2 and 
the components of the vector v. Condition (I) above is a minimal require- 
ment if any fluid dynamical approximation is to be recovered, while condi- 
tion (II) is needed if the theory is to be Galilean invariant. For  example, 
one such choice of ~ that was studied extensively by Grad is 

M =span{ 1, v, v v v, Ivl 2 v} (4.3) 

which in three dimensions provided the basis for his 13-moment closure. 
This choice was made to include the momentum and energy fluxes of (2.5) 
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among the moment densities, which can therefore be expressed in terms of 
p, u, 0, Z, and q by (3.1) and (3.2). 

Given any M satisfying conditions (I) and (II) of (4.2), Grad proposed 
the following two-step closure procedure/~8~ The first step is to expand F 
in terms of Hermite polynomials relative to the weight g(p,  u, 0). For M 
given by (4.3) this leads to 

( 2 1 ) 1 1 .2"" A + - -  - -  q.  B (4.4) 
F = N  1 +-2 pO D + 2 pO 3/z 

The moment flux terms in (4.1) can then generally be evaluated by direct 
integration. The second step had two motivations: that the collision term 
in (4.1) could almost never be evaluated explicitly, and that it seldom yields 
the correct behavior in the fluid regime. To overcome these difficulties 
Grad introduced the so-called diagonal approximation in which the colli- 
sion operator Cg(F) is modified by linearizing it about F = d  ~ and then 
"diagonalizing" it with respect to the Hermite polynomials so as to recover 
the correct transport coefficients. This modification takes the form 

1 0  2 0 
C g ( F ) = - ~ . - f i g A ' ( A F )  D + 2  g B . ( B F )  . . . .  (4.5) 

where Ft and x are the viscosity and heat conduction given by (3.22). This 
simplification allows both the collision term in (4.1) to be evaluated and 
the correct Navier-Stokes behavior to be recovered. 

The moment closure prescribed here places an additional requirement 
on the linear subspace M. Given any M, this requirement is formulated in 
terms of the associated subset 

M,. = {ms  M: (exp (re(v))) < or} (4.6) 

The convexity of the exponential function ensures that M,. is a convex cone 
in M. We will construct a self-consistent closure of the kinetic equation 
(2.1) for each M satisfying conditions (I), (II), and also 

(III) the cone M,. has a nonempty interior in M (4.7) 

We shall call such subspaces admissible and all other subspaces inad- 
missible. 

It is clear from (4.6) that only polynomials re(v) such that re(v) --* - o o  
as Ivl --,  oo comprise M,.. Hence, condition (III) of (4.7) can only be met 
by linear spaces of polynomials over v with even maximal degree. In par- 
ticular, the M of the Grad 13-moment closure (4.3) is inadmissible. In 
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general, a linear space of even maximal degree that is invariant under 
translational and orthogonal transformations and contains E can be 
admissible, but might not be. Examples of such admissible spaces with 
maximal degree two and four are 

maximal degree = 2: ~ = s p a n { 1 ,  v, Iv[ z} ---IF 

M = span{ 1, v, v v v} 

maximal degree =4:  M =span{ 1, v, v v v, Ivl 2 v, Ivl 4} 
(4.8) 

=span{ 1, v, v v v, v v v v v, Ivl 4} 

=span{ 1, v, v v v, v v v v v, ]vl 2 v v v} 

[~ =span{ 1, v, v v v , v  v v v v, v v v v v v v} 

while an example of an inadmissible space of maximal degree four that 
satisfies conditions (I) and (II) but not (III) is 

{ ( )} M = s p a n  1, v, v v v ,  v v v v v ,  lvl 2 v v v - - D l V l Z I  (4.9) 

In three spatial dimensions the admissible spaces listed in (4.8) have dimen- 
sion 5, 10, 14, 21, 26, and 35, respectively. Each of these spaces except the 
fourth is generated by its highest degree basis elements (Ivl 2, v v v, Ivl 4, 
Ivl 2 v v v, and v v v v v v v in the examples) through the action of the 
translations ~ ,  in condition (II) of (4.2). For each even degree 2n there are 
n + 1 such spaces, one for each possible trace of the 2n-fold tensor product 
of v. Spaces such as the fourth one above become prevalent as n increases. 
Of course, there is no need to consider only spaces of polynomials, but they 
will be used here to illustrate the closure procedure. 

The closure procedure may now be stated simply. Let F in the moment 
system (4.1) have the form 

F =  , # ( a )  = exp(arm(v))  (4.10) 

where a r is the transpose of some a = a ( t ,  x )  with values in R M such that 
arm(v) lies in the cone Me. This results in the system of M equations (4.1) 
for the M unknowns a given by 

O , ( m J / ( a ) )  + V.,_. (vmJc ' ( a ) )  = ( m ~ ( J C ( a ) ) )  (4.11) 

where the moment densities, moment fluxes, and collisional terms are 
expressed in terms of e as the integrals 

( m ~ g ( a ) ) ,  ( vmJC(a ) ) ,  (m~g(JC(a)))  (4.12) 

822/83/5-6-16 
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Each admissible space M generates such a closure, and the hierarchy of 
such closures is partially ordered by the relation c acting on the 
admissible spaces. 

For  admissible spaces of maximal degree two the first two integrals in 
(4.12) may be evaluated explicitly, allowing direct study of the moment 
system (4.11). For example, when M =span{1,  v, Iv[ 2} one can see from 
(4.10) that J4 = ,~, so that the collisional term vanishes and (4.11) becomes 
the Euler system (3.6). Less trivial is the case when M = span{ 1, v, v v v}. 
In that case the moment densities and fluxes can always be evaluated as 
Gaussian integrals and even the collisional term can be evaluated for many 
classical collision operators cg. While this so-called Gaussian closure 
improves upon the Euler system by having a nontrivial stress, it still has a 
heat flux that is identically zero. Regardless of this deficiency, this closure 
will be examined in considerable detail in the next section. 

For admissible spaces of maximal degree four or more the integrals in 
(4.12) are impossible to evaluate explicitly as functions of a. Indeed, the 
efficient evaluation of these integrals would seem a formidable obstruction 
to any practical implementation of these closures. However, the moment 
system (4.1 l) has remarkable structural features that make it highly attrac- 
tive theoretically and that facilitate its practical implementation. This 
structure can be brought out by recasting the moment system (4.11) in 
terms of the density potential h* and the flux potential j *  defined over the 
cone M,. by 

h*(a)-(Jg(a)), j*(a)--(vJl(a)) (4.13) 

and the vector of collisional relaxation terms r* defined by 

r * ( a )  -= (m~'(~#(a))) (4.14) 

Differentiating (4.13) with respect to a using (4.10) yields the relations 

h*(a) = ( m J ~ ( a ) ) ,  j*(a) = ( v m J / ( a ) )  (4.15) 

where the right sides are just the moment densities and fluxes given in 
(4.12). The closed moment system (4.1 1) can therefore be put into the so- 
called potential form of Godunov ~131 

a,h*(a) + V.,..j*(a) = r*(a) (4.16) 

Moreover, because each component of v is in M, each component of the 
flux potential j *  is itself a moment density and hence expressible in terms 
of first derivatives of the density potential h*. Therefore, evaluating the left 
side of (4.16) requires only a twice differentiable evaluation of the scalar 



Moment  Closure Hierarchies for Kinetic Theories 1039 

function h* in terms of a. Of course, such an evaluation of h* is generally 
going to be quite complicated, but this is the price to be paid for the 
structural simplicity that emerges below. 

The moment system (4.11) has many desirable properties that can be 
read off from its potential form (4.16), many of which are lacking in tradi- 
tional closures. The most important of these is its hyperbolicity, which 
ensures that the system is at least linearly well-posed. This property follows 
from the fact that the density potential h* = h*(a) is a strictly convex func- 
tion with a positive-definite Hessian matrix 

h*.(a) = < m m r g ( a ) >  (4.17) 

Indeed, a direct calculation using (4.10) shows that for every 7 ~ R~t one 
has 

7rh*. (a)  ~, = ((~,"m) 2 ~#(a) )  >/0 (4.18) 

with equality if and only if 7 =0.  The hyperbolicity of (4.16) then becomes 
evident upon rewriting it in the form 

h*,~(a) 8,a +j*.(Ot). V.~.a = r* (a )  (4.19) 

By the positive definiteness of h*~ and the symmetry o f j*~ ,  this has the 
Godunov form of a symmetric hyperbolic system for a. ~a~ The charac- 
teristic velocities associated with any wave vector k ~ R D are determined by 
the critical values of the Rayleigh quotient 

7Tk .j*,~(a) 7 
7~-~ 7Vh, (a) 7 (4.20) 

considered as a function over nonzero 7 ~ RM. 
Another important property of the moment system (4.11) that is 

exposed by the its potential form (4.16) is the existence of an entropy that 
is locally dissipated. Indeed, multiplying (4.19) on the left by a r yields 

a,(a%*(a)-h*(a))+ V,..(arj*(a)-j*(a))=aVr*(a) (4.21) 

where 

etrr*(a) = (arm~g(,J#(ot))) = ( log .,#(a) @(.,#(a))) (4.22) 

The local dissipation relation (2.6) for the collision operator ~ then implies 
that 

arr*(a) <~ 0 (4.23) 
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while the characterization (2.8) of the equilibria of ~o shows that equilibria 
of r* are characterized by the equivalence of the following statements: 

(i) a r r* (a )  = 0 

(ii) r * ( a )=O (4.24) 

(iii) a r m e E  

Moreover, the density in (4.21) may be put in the form 

aTh*~(o) - h * ( a )  = ( aTmo#(a) ) - ( J l (a )  ) 

= (,.,///(a)log ( j / ( e t ) ) -  Jg(et)) (4.25) 

from which it is seen to be exactly equal to the entropy density in (2.9) 
associated with the distribution ,.#(a). 

Traditionally moment closures have been expressed in terms of the 
moment densities, denoted as a, which by (4.15) are given as a function of 
et by 

p - (m./ /r  = h*(a) (4.26) 

This relation can be inverted in terms of the function h = h(p), which is the 
Legendre transform of the strictly convex function h*. Specifically, h is 
defined by 

h(p) + h*(a) = arp (4.27) 

where p and a are related by (4.26). Then a can be expressed as a function 
of p by 

a = h p ( p )  (4.28) 

By comparing (4.27) with (4.25), it is seen that h(p) is the entropy density; 
this relation thereby gives physical meaning to both a and h*, which 
heretofore might have seemed artificial. 

The moment system (4.16) can now be formulated in terms of the 
moment densities as 

0,p + V, . . j*(hp(p))  = r*(hp(p)) (4.29) 

An explicit expression of the moment fluxes in terms of the moment den- 
sities is no less complicated or impossible than it was for the a formulation 
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(4.16). The hyperbolicity of this formulation (4.29) becomes evident upon 
rewriting it as 

O,p +j*,~(hp(p))hpp(p). V,.p = r*(hp(p)) (4.30) 

and observing that the Hessian matrix hop(p) is a Friedrichs-Lax sym- 
metrizer 1~21 of this equation. The equivalence of the Godunov and the 
Friedrichs-Lax forms for general hyperbolic systems was proved in. 132) 
Moreover, it is seen easily from (4.27) that the local entropy dissipation 
law (4.21) can be formulated in terms of the moment densities as 

0,h(p) + V,..j(p) = hp(p)rr*(hp(p)) (4.31) 

where the entropy flux j = j ( p )  is given by 

j(p) + j * ( a )  = otrj*(a) (4.32) 

with a related to p by (4.28). Hence, by (4.23) and (4.24), h = h ( p )  is a 
strictly convex entropy for the system (4.29) both in the sense of "extended 
thermodynamics ''c33~ and in the more general sense of relaxation systems, c8~ 

The implicit definition of the entropy density h through (4.27) 
provides a practical algorithm for computing both h and a as functions of 
p. This is particularly useful because there is no explicit expression for h, 
not even on the level of a quadrature formula such as (4.13) prescribes the 
density potential h*, and hence no explicit expression for et as a function 
of p. Suppose that the integral in (4.11) that defines the density potential 
h* and two of its derivatives can be effectively evaluated through a com- 
bination of asymptotics and numerics. Then, given a value of p, it follows 
from (4.26) and (4.27) that the values of ~t and h(p) can be obtained 
numerically by solving the minimization problem 

1 7 ( p )  = - min{ h*(a) - arp} (4.33) 
t l  

Of course, the resulting a can then be used to evaluate the moment fluxes 
j*  and the collisional vector r*, which can then be used to update p 
through a difference approximation to (4.16). In particular, as was 
remarked following (4.16), the moment fluxes can be evaluated as second 
derivatives of the density potential h*. More details on numerical algo- 
rithms that exploit this approach will be given in Section 8. 

The choice of the exponential form of the density (4.10) was not made 
merely to maintain nonnegativity; many other choices would have achieved 
that objective. Nor  was it made merely to ensure hyperbolicity; many other 
choices would have achieved that objective, too. Rather, its significance lies 
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in the fact that the exponential function is the Legendre transform of the 
entropy density F~-* Flog F - F .  It is this relation that leads to the local 
dissipation properties (4.23) and (4.24), hence capturing the structures 
identified in ref. 8 as leading to formally well-posed fluid dynamical 
approximations. This Legendre relation also implies that (4.10) is the 
unique density F that minimizes the entropy subject to the constraint that 
its moments ( m F )  are fixed. More specifically, given a density vector p, 
one has 

h(p) = min{ ( F log F -  F)  : ( m F )  = p} (4.34) 
F 

with a related to p by (4.28). This kind of so-called entropy m#Timization 
principle has long played a role in statistical physics to provide various 
closures, cl~ whereas here it is viewed as a logical consequence of the 
closure capturing the proper structures. 

It was shown in ref. 8 how the existence of such an entropy leads 
formally to both the correct Euler approximation and a consistent 
Navier-Stokes approximation. In general the Navier-Stokes approxima- 
tion of the moment system (4.11) will have the same form as that for the 
kinetic equation (2.1), possibly differing only in the numerical value of the 
viscosity and heat conductivity coefficients. The question of the correctness 
of the Navier-Stokes approximation will he addressed in Section 6. 

Some recent works have employed exponentially based closures of the 
form (4.10). Dreyer I~~ did so within the context of extended ther- 
modynamics. ~33~ However, he treated the exponential formally, never 
imposing a condition like (III), and proceeded to retain only the quadratic 
terms in the exponent while expanding the rest as a polynomial. Both the 
entropy and hyperbolic structure are generally lost in the resulting moment 
equations. Apparently independently, Gorbin and Karlin 116" ~1 put forth a 
general procedure for deriving dynamical equations (not necessarily for 
moments) for nonequilibrium systems based on an entropy minimization 
pr#Tciple. When the form of the density is given by (4.10), their closure pro- 
cedure replaces one of the moment densities with the entropy density as a 
fundamental variable, superficially leading to a system that is formally 
equivalent to (4.11). So long as the solutions of this system are classical, 
then the solutions will likewise be equivalent. However, when the solutions 
become weak due to the development of singularities, then the profound 
differences in the underlying viewpoints lead to quantitative differences in 
the solutions. This can be best understood by applying their procedure to 
the family of Maxwellians, formally obtaining the Euler equations (3.6). 
However, their fundamental equations are the mass and momentum local 
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conservation laws of (3.6) and the entropy equation (3.7) taken as an 
equality, which is inconsistent with energy conservation for weak solutions. 
Indeed, they do not address how to handle the eventual development of 
singularities at all. Moreover, they address neither the hyperbolicity of the 
resulting systems nor the recovery of the Euler and Navier-Stokes 
approximations. 

5. T H E  G A U S S I A N  C L O S U R E  

The linear space 1~ = G -= span{ 1, v, v v v} is the smallest admissible 
space that properly contains IF and thus generates the simplest closure of 
the type developed in the last section which extends beyond the Euler 
system. The dimension of G is (D + 1 )(D + 2)/2 in general, ten when D = 3. 
The entropy-minimizing densities (4.10) for this space can be parametrized 

i~o v o where R D+ v o denotes the set of sym- by p e R + , u e R  ~ and O e . . +  , 
metric, positive-definite D x D matrices; they take the form of Gaussian 
densities, given by 

exp(1 ) 
i f ( P , u , O ) - [ d e t ( 2 z t O ) ] l / 2  - ~ ( v - u ) ' O - I ( v - u )  (5.1) 

This translates into the notation of the last section by identifying m(v)=  
(1, v, v v v) r and 

((  ) )T 
p 1 1 I (5.2) 

a =  log [det(2nO)]l /2 - - ~ u ' O - * u ,  O - l u ,  --~_ O -  

so that if(p,  u, O) = J~/(a). The positive definiteness of O is required for 
condition (III) of (4.7) to be satisfied. Relation (5.2) may be easily inverted 
to express (p, u, O) directly in terms of a. However, the simplicity of this 
closure stems from the fact that all moments can be computed for Gaussian 
densities and these moments can be expressed better in the (p, u, O) than 
in the a notation. For  example, integration of the basic moments 
1, v, v v v, and v v v v v over the Gaussian density if(p, u, O) yields 

( ~ ( p ,  u, 0 ) )  = p  

( vif(p,  u, 0 ) )  = pu 

(v  v vif(p, u, 69)) = p u  v u + p O  

(v  v v v vif(p, u, 0 ) }  = p u  v u v u +  3pO v u 

(5.3) 
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Taking the trace of the v v v moment and comparing with (3.1) shows that 
0 =  ( l /D) t r (O) .  Comparing (5.3) with (3.2), we find that the stress Z and 
heat flux q are given by 

Z=p(O-OI), q = 0  (5.4) 

Notice that when O = Ol the Gaussian density fr reduces to the equilibrium 
density g and formulas (5.3) and (5.4) reduce to their values for the Euler 
closure. Because Gaussian densities admit no heat flux, the Gaussian 
closure is of limited practical interest; however, it provides an approxima- 
tion that in some respects lies between the Euler and the Navier-Stokes 
approximations. 

The moment equations governing p = p( t, x), u = u( t, x), and O = O( t, x ) 
are 

0,p + V.,. - (pu) = 0 (5.5a) 

O,(pu)+ V.,..(pu v u+ pO)=O (5.5b) 

O,(puvu+pO)+V. , . . (puvuvu+3pOvu)=S(p,O)  (5.5c) 

where, following (4.14), the collisional term Z is shown to be independent 
of u by first using the translation invariance (2.11) and then using local 
conservation (2.3) to obtain 

3(p, O)==-<v v v~'(~(p, O, 0) )>  

= < ( v -  u) v (v - u )  ~(f#(p,  u, 0 ) ) >  

= <v v t ,~(~(p,  u, O))> (5.6) 

The local energy conservation law is recovered by taking the trace of 
(5.5c), 

D (~plul'u+~pOu+ O,(~plu[2+.~pO)+V,. 1 , D pOu)=O (5.7) 

Notice that when O =0I the momentum equation (5.5b) and the energy 
equation (5.7) reduce to those given by the Euler closure (3.6). 

The Gaussian closure has a long history in kinetic theory--remarkably,  
longer than the Boltzmann equation itself. Indeed, six years before 
Boltzmann ~6~ showed that Maxwell's general "equation of continuity" could 
be reformulated as an evolution equation for F, Maxwell himself raised the 
possibility of applying this closure to a gas of what are now known as the 
Maxwell moleculesJ 3~1 Maxwell did not pursue the matter because his 
theory of gas dynamics, in which the molecules were assumed to be near 
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local equilibrium, did not require it. In the 1950s and 1960s, however, the 
closure was rediscovered and advocated by many (for example, see refs. 22 
and 23) as a way to derive closed systems of moment equations to describe 
gases that are not near local equilibrium. None of these works, however, 
treated it within the context of a larger hierarchy such as the one studied 
here. 

The physical content of the moment equations (5.5) is brought out 
more clearly when they are expressed in terms of the convective, or 
Lagrangian, derivative 0 ,+u .V , . .  Using (5.5a) to eliminate time 
derivatives of p from (5.5b) and (5.5c) gives 

(O,+u. 7,-) P + pV.,., u = 0  (5.8a) 

p(O, + u. 7,-) u + 7 , .  (pO) = 0 (5.8b) 

p(O, + u. V,.)(u v u + O) + 2u v V,.. (pO) 

+p(O.V. , .u+(V,u)  r. O) = ~,(p, O) (5.8c) 

It is seen from (5.8b) that 

p(O, + u. V,.)(u v u ) +  2u v V,.. (pO)= 0 (5.9) 

Subtracting (5.9) from (5.8c) and dividing by p leads to 

(O ,+u .V . , . )O+(O.V . , . u+(V , .u ) r .O)=l -~ (p ,O)  (5.10) 
P 

This equation clearly shows both the distortion of O by the velocity flow 
field u and the fact that its evolution is consistent with it remaining a sym- 
metric matrix. 

In order to see that O also remains positive definite, multiply (5.10) on 
the left by O-* and then take the trace to obtain 

1 
t r ( O - ~ ( O , + u . V . , . ) O ) + 2 V x . u = - t r ( O - l S ( p , O ) )  (5.11) 

P 

Upon using the general identity 0.,. log(det O ) =  tr(O -~0.,.O) and (5.8a), one 
finds 

( p ~ O )  =(a ,+u .V. , . ) log(de t  O ) - 2 ( a , + u .  Vx)log(p) (0,-t- u. Vx) log d 

1 
= - t r ( O - ~ ( p ,  O)) (5.12) 

P 
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Now recalling the definition (5.6) of 3(p, O), the form (5.1) of if(p, u, O), 
and the local entropy dissipation (2.6), one has 

�89 tr(O-13(p,  0)) = �89 --u). O-l(v --u) ~f(ff(p, u, O)))  

=-(log(f f (p,u,O))Cg(f f (p,u,O)))  >~O (5.13) 

It follows from (5.12) that det O never passes through zero so long as p 
remains positive. Hence, its eigenvalues remain bounded away from zero 
and O remains positive definite. 

After multiplying (5.12) by - �89 and using the density equation (5.8a) 
yet again, we can bring it into the divergence form 

O,(pa) + V,.. (pua) = - �89 t r ( O - ~ ( p ,  O)) (5.14) 

where a is the specific entropy, which is given by 

1 ( p ) D+2 
t r = -  ( f f  log ff - f # )  = log  

p [det(21rO)] 1/2 2 
(5.15) 

Moreover, for any (p,u, O ) e R +  x ~ n x ~  n• the following statements 
are equivalent: 

(i) t r(O-~3(p,  0 ) ) = 0  

(ii) Z(p, O ) = 0  (5.16) 

(iii) 0 = 0 I  forsome 0 ~ R +  

Just as for the Euler equations, the Gaussian moment equations (5.8) 
admit a large family of formal dissipation laws in the form 

O,(ph(a)) + V.,.. (puh(cr)) = - �89 tr(O-~S(p, O)) (5.17) 

where h = h(a) is any differentiable function over R. Moreover, ph will be 
an entropy density for (5.8) in the sense of ref. 8 whenever h ' ( a )>0 ,  and 
strictly convex whenever h satisfies (3.10). The choice h(a)=a in (5.17) 
recovers (5.14). 

Now we turn to the second step of our closure procedure, namely, the 
treatment of the collisional term 3(p, O). In doing so, we will illustrate 
some key difficulties faced for higher order closures within the context of 
the simpler Gaussian closure. The effect of the collision term on deviations 
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from the local equilibrium approximation can be computed systematically 
using a "Chapman-Enskog" analysis of the scaled moment equation 

O,(pu v u + pO) + V.,. . (pu v u v u + 3pO v u ) = 1 3 ( p ,  (5.18) 

where e is a dimensionless number that gives the order of the collisional 
length scales over the macroscopic gradient length scales. The traceless part 
of (5.10) is then simply 

( 2 )1  
(0, + u. V.,.)(O - 0I) + O.V., .u + (V.,.u) r- O - ~  tr(O. V,.u)I = e p  ~(p'  O) 

(5.19) 

The Chapman-Enskog procedure then expands O in e as 

O = O I  + e 0 ~l + e'-O~ + . . .  (5.20) 

where, upon setting (5.20) into (5.19), each O ~kJ is to be expressed in terms 
of the fluid variables (p, u, 0) and their spatial derivatives subject to the 
constraint tr(O ~kl) = 0. 

The "Navier-Stokes" approximation is obtained from the leading 
balance, which occurs at order e ~ where O I1} is found to satisfy 

pO V . , . u+(V ,_u)T- -~V . , . .UI  = "Oo3(p ,  OI) (5.21) 

Here the right side is computed directly from (5.6) to be 

0~1~: OeM_,(p, OI) = - ( v  v v D ~ ( g ( p ,  O, 0)) 0~1~: 0of~( p, O, OI)) (5.22) 

where DOg(g) is defined in (2.14). The derivative of ~ above is computed 
from (5.1) as 

( 1 1 , { ) 
OIl}" Oo~(p ,  O, O I ) = ~ ( p ,  O,O) 2 V . O - l O ~ l l O - l v - - ~ t r ( O  - O lJ) 

O = O I  

1 0 ) ~ ( f _ _ ~  - I) 0 I1 = ~  ~(p, 0, - �9 (5.23) 

Combining (5.22) and (5.23) while using definitions (2.14) of ~,o and (3.5a) 
of A gives 

O(l): Oo~(p,  0I) = -- I (Ad ' .~ ,~A)  0 (I) (5.24) 
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By the orthogonal symmetry of s and the fact that t r (A)= 0, the com- 
ponents of (Ad '~A)  satisfy the identity 

( A~igLP_;Ak,) =,lc, (6~k6;,+6~,d/k--2 6U&~,) (5.25) 

where t l~= q~(p, O) is defined by 

1 
(A �9 gSae. A) (5.26) IIe--(D_ 1)(D+2)  

The right side of (5.21) can be evaluated by using (5.24) and (5.25) and 
recalling that tr(O ~ )  = 0 to obtain 

pO (V.,.u v 2 uI) + (7,.u) - ~ 7 , -  

Hence, the stress pO ~tJ takes the form 

= --qGO cl~ (5.27) 

pO'~'=--lt6.(p,O)(V,.u+(V.,.u)V--2V.,..uI) (5.28) 

where it~ is the viscosity for the Gaussian closure, which is given by 

pZO itc;(p, O) - -  (5.29) 
P/G(P, 0) 

The positivity of both I/6. and ll6. is a consequence of (2.23). 
When s is self-adjoint (s = L#~) then a direct comparison can be 

made between the Navier-Stokes viscosity ll, given by (3.22a), and the 
Gaussian viscosity lt~, given by (5.26) and (5.29). The Cauchy-Schwarz 
inequality can be used to obtain 

/~c, = ( O - 1 ) ( O + 2 )  (A''d'~-q~e'A)(A'dSF'~-'A) 
( )2 

1 1 ( A  ",~'A) = 1 
>1 (D--1)(D+2)p 

Hence, we find that 

(5.30) 

0 </tG(p, 0)~</t(p, 0) (5.31) 

with equality if and only if ~9~ =2A for some positive eigenvalue 2, in 
which case qG=p2 and It =ItG=pO/2. This is the case for the Boltzmann 
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equation when applied to the Maxwell gas, 171 but not when applied to 
more general gases. For most classical collision operators ~ is indeed self- 
adjoint and inequality (5.31) is strict. 

The Gaussian moment equations (5.5) are very explicit, with the 
exception of the collision term 3(p, O) defined by (5.6). For some collision 
operators ~g the integrals in (5.6) can be performed and a simple expression 
for ~(p, O) obtained; 1281 however, that is the exception rather than the rule. 
In any event, as the remarks after (5.31) indicate, the associated viscosity 
lla will generally be smaller than the Navier-Stokes viscosity ll. If the solu- 
tion to the moment equations is to properly extend into fluid dynamical 
regimes, it is important to modify the collision operator so as to match the 
moment viscosity and the Navier-Stokes viscosity. 

In cases when ~(p, O) is effectively computable, this may be achieved 
by replacing ~' with the rescaled collision operator 

~(F) =ltG(P, O) ~'(F) (5.32) 
IL(p, 0) 

where p and 0 are recovered from the moments of F by using (3.1). This 
modified collision operator satisfies all the conservation, dissipation, and 
symmetry requirements laid down in Section 2, so the foregoing theory 
applies directly. The associated collision term is then 

~,(p, O) _I~(P, O) S(p, O) (5.33) 
it(p, 0) 

The resulting modified moment equations (5.5) will recover the correct 
Navier-Stokes momentum equation. 

In cases when the evaluation of ~(p, O) is difficult or impossible, a 
more drastic modification of the collision operator is in.order. About the 
simplest thing to do is to replace ~- with the BGK collision operator ~3~ 

~ ( F ) -  p__~0 ('~'(P, u, 0 ) - F )  (5.34) 
it(p, O) 

As before, this modified collision operator satisfies all the requirements laid 
down in Section 2, and the foregoing theory applies directly. By inserting 
(5.34) into (5.6), we easily find the associated collision term in the moment 
equation (5.5c) to be 

~(p, 0 ) -  p2~O (OI- O) (5.35) 
It(p, 0) 
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As before, the resulting modified moment equations (5.5) will recover the 
correct Navier-Stokes momentum equation. However, this expression for 
the collision term has the virtue of being very easy to compute, requiring 
only knowledge of the Navier-Stokes viscosity/~. For this reason, the BGK 
modification (5.35) is the most practical to implement. The resulting equa- 
tions are exactly those obtained by neglecting third-order moments in v -  u 
when evaluating the flux of the equation for the second-order moments 
while modeling the collisional terms with a simple relaxation tuned to 
recover the Navier-Stokes viscosity. 

6. COLLISIONAL TERMS FOR HIGHER ORDER CLOSURES 

Although simple, the Gaussian closure presented in the last section 
does not recover the correct Navier-Stokes approximation because the 
Gaussian densities (5.1) have no heat flux (5.4), and therefore no heat 
conduction term can arise in the energy equation (5.7). However, all 
admissible subspaces of degree four, (4.8), and higher have a nontrivial 
heat flux and hence hold out the possibility that the correct Navier-Stokes 
approximation can be recovered as the first correction to the Euler equa- 
tions. In this section it is shown that all such higher order closures lead to 
the correct form (3.21) of the Navier-Stokes stress and heat flux. When ~ 
is self-adjoint the values of the viscosity and heat conduction derived from 
such closures will generally be less than the correct physical values. 
However, similar to what was done to recover the physical viscosity for the 
Gaussian closure, it will be shown that the collision operator can be 
modified so as to recover the correct physical viscosity and heat conduc- 
tion. 

Deviations of solutions of the moment system (4.14) from the local 
equilibrium approximation can be computed systematically using a 
"Chapman-Enskog" analysis of the scaled moment system 

a , ( m J / ( a )  ) + V.,.- ( vm, ~/(a)) = 1 (m~'(.~#(a))) (6.1) 

where ./lr is defined in (4.8). The fluid dynamical variables (p, u, 0) are 
related to a by 

< J / ( , ) >  =p ,  <v.,#(a)) =pu ,  Ivl2J/(a) =splul2+fp (6.2/ 

and satisfy the conservation laws (3.3) with the stress and the heat flux 
given by 

~=O(A,#(ot)), q=O3/'-(BJ/l(ot)) (6.3) 



Moment  Closure Hierarchies for Kinetic Theories 1051 

The Chapman-Enskog procedure then expands a in e as 

(7, = a {0) "dr- e ~ ( 1 )  + e 2 ~ ( 2 1  3i - . . .  (6.4) 

where a ~~ is determined by the fluid variables through the relation 

J /(at~ = g (p ,  u, 0) (6.5) 

and where, upon setting (6.4) into (6.1), each a I*~ is to be expressed in 
terms of the fluid variables (p, u, 0) and their spatial derivatives subject to 
the constraint (6.2). 

By substituting (6.4) into the exponential form (4.8), we obtain the 
expansion 

J / ( a )  = g(1 +emra~'l +e'-[mra~21+~(mraCl~) "-] + ...) (6.6) 

Upon setting this expansion into relation (6.2) while recalling (6.5), one 
finds at order e the constraint 

<gmr> at l~=0,  <vdmr> Gill----0, <lvl2~'mT> a l '~=0  (6.7) 

Next, setting expansion (6.6) into the moment equations (6.1), we find that 
the leading order balance yields 

a,<md~> +V,. .  <vmg> = - <md~s a I'l (6.8) 

The nonconservative part of these equations can be isolated by multi- 
plying on the left by an arbitrary ,/r where 

(6.9) Vz ~:•  {Tz ~ " :  7 r m e  n :• } 

By so doing, we obtain 

: _ 7T <m,d' a ' g  +~,~ V-"~> 

(6.10) 

Because the vectors multiplying 7 r in the left-most and right-most expres- 
sions of (6.10) are both in U :z, the 7 7- may now be removed and (3.17) used 
to find that a ~jl satisfies 
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1 
(m~163 ~ = ---2 <mCA) " V, .u+(V,u)r - -~V~. .  . �9 uI 

1 
01 / .  , ( m g B )  - V.,.O (6.11) 

The matrix (mdL~em r )  is positive definite over E • by (2.23) and 
therefore has a unique pseudoinverse (mgLP,~m r )  - i .  The unique solution 
of (6.7) and (6.11) is 

a(l) l ( m g ~ r  ( m g A )  . (V, .u+(V~.u)r  2 uI)  
= . . 

1 
0 I/2 (mo~Sae m r )  --t ( m g B )  �9 V,.O (6.12) 

Using the even/odd symmetry of &e e to infer that 

(A ,~mr) ( m g S a e m r )  - l ( m d B )  = 0  

( Bd'mr) ( mg  SYem r) - t ( m g A )  = 0  
(6.13) 

and substituting (6.12) into (3.4) leads to the "Navier-Stokes" approxima- 
tion 

~ =O( A g m  r) a ~ll 

( T2 ) = - l o ( A ' ~ m r ) ( m r 1 6 2  2 V.,.u + (V~.u). - - ~ V , . . u I  . 

q = 03/-'( BoOm r )  a ell (6 .14 )  

= - 0( B~m r )  ( m~Se e m T) - 1 ( m g B )  �9 V.,. 0 

By the symmetry of L# e with respect to orthogonal transformations (2.25) 
and the fact that t r (A)=0 ,  the components of the above tensors can be 
evaluated in the spirit of (3.20), so the "Navier-Stokes" approximation 
(6.14) becomes 

z= -/~M(V.,u+(V,.u)r-2Vx.uI) 
(6.15) 

q = - -  K M V . , . O  
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where the viscosity ~[IM=/.AM(p, O) and the heat conduction KM=KM(p, O) 
are given by 

1 
PM = 0 

(D - 1 )(D + 2) 
t r ( ( m g A )  :Ao~mr) (mgL,  Oemr ) - 1 )  (6.16a) 

= 0 1 tr( (m~~ - ( BoOm r )  ( raN5~ m r )  -1) 
KM D (6.16b) 

The positivity Of pM and h'M is a consequence of (2.23) and the fact that 
the vectors ( m d A )  and ( m C B )  are nonzero for closures of higher order 
than the Gaussian closure. Indeed, for the Gaussian closure the vector 
( m C B )  is zero, leading to zero heat conduction in that case. The func- 
tional independence of PM and x M on u is a consequence of Galilean 
invariance. 

When L~'r is self-adjoint (L-a~ = .Leg), then a direct comparison can be 
made between the Navier-Stokes viscosity p and heat conduction K given 
by (3.21) and ItM and KM given by (6.16). For  each g e E • define the quad- 
ratic form 3 acting on T �9 F• as 

~A(y) - y r (  mEZ#em r )  3' _ 277-(m~g) + (g~L~jlg) 

= ( ( y r m  - .s tg) $r163 (y rm -- .LZj Jg)) >/0 (6.17) 

This quantity is minimized when 

3' = 3'(g)= ( m~Z~~ m r )  - 1 ( m ~ g )  (6.18) 

at which value (6.17) becomes 

3(3'(g)) = ( g ~ . ~ l g )  _ ( g ~ m r ) ( m ~ m  r)-l(m~,g ) ~>0 (6.19) 

with equality if and only if L~'~-lg�9 M. 
By letting g in (6.19) be an arbitrary linear combination of the com- 

ponents of first A and then B, one deduces the quadratic form inequalities 

( A ~ ; I  A) >~ ( A ~ m r ) ( m ~ m  r) - 1 ( t o g A )  
(6.20) 

( Bo~ZP~ l B) >1 ( B~m T) ( mgZPem r) -l(mo~B) 

with equality respectively if and only if each component of .LP~.-IA or 
L#~ -I B is in ~ .  In particular, by using these inequalities to compare the 
formulas (6.16) for ltM and h'M with formulas (3.22) for p and K, we find 
that 

0 <#M~</t, O<h'M<~X (6.21) 

822/83/5-6-17 
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An important special case for which equality holds in both (6.20) and 
(6.21) is when the components of A and B are eigenfunctions of s 6. For 
the Boltzmann equation this is the case for a gas of Maxwell molecules, ~7~ 
but not for more general gases. For  most classical collision operators &o 
is indeed self-adjoint and inequalities (6.21) are strict. 

In order for the closure to have the proper behavior in the fluid 
dynamical regime the collision term r*(a) must be modified. This should be 
done in a way that does not destroy the entropy structure of the moment 
system. As was done for the Gaussian closure, the idea will be to modify 
the collision operator Cg(F) so as to recover the correct transport coef- 
ficients ll and h" while at the same time facilitating the calculation of the 
collision term r*(a). In particular, it is desirable from a practical viewpoint 
that the evaluation of the collision term in (4.14) should be no harder than 
the evaluation of the fluxes. 

The simplest modification to consider is the BGK collision operator 

=IL(P00) (g(p ,  u, 0 ) - - F )  Cg(F) (6.22) 

where the relaxation rate is normalized as in (5.34) so as to obtain the 
correct Navier-Stokes viscosity. However, the associated heat conduction 
will be h" = [ (D + 2)/2] It, which corresponds to a gas with Prandi number 
Pr = 1, where 

2 h-(p, O) 
Pr -= - -  - -  (6.23) 

D + 21t(p, O) 

This will generally not give the correct heat flux because for most gases one 
has Pr < 1. However, provided Pr ~< 1, the correct Navier-Stokes heat con- 
duction is recovered by a collision operator of the form 

C~(F )= pO , ( ~ ( P , u , O ) - F )  
/t~p, 0~ 

+ - h(p, O) It(--~,Oi (f#(P" u, O ) - F )  (6.24) 

where p, u, and O are determined from F by 

( F )  =p, (vF)  =pu, (v v vF) =pu v u + p O  (6.25) 

and 0 is then determined by O=(I/D)tr(O). This collision operator has 
two relaxation time scales. The first is related to the heat conduction and 
gives the rate at which the density F relaxes to the Gaussian fr u, O). 
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The second is related to the viscosity and gives the slower rate at which the 
Gaussian relaxes to the local equilibrium g(p ,  u, 0). As we will see below, 
this two-scale generalization of the BGK collision operator  satisfies all the 
requirements put forth in Section 2. 

The collision operator (6.24) is the first in a whole family of multiscale 
generalizations of the BGK operator. The construction of a K-scale mem- 
ber of this family proceeds as follows. Consider any sequence of K 
admissible subspaces { Mk} ~= 1 ordered by strict inclusion and strictly con- 
tained within M as 

IF---M 1 ~ M 2 ~  . - .  C M K C M  (6.26) 

Denote a column vector of basis elements of Mk by mk = ink(V). Define the 
density 

Jgk -- exp (a /m)  (6.27a) 

where ak e R M is uniquely determined by the relations 

T a k m e M k ,  ( m k J g k )  = ( m k F )  (6.27b) 

Next, associate with these subspaces and densities a corresponding 
sequence of relaxation rates Vk = vk(p, O) that are strictly ordered so that 

O< pO 
- - =  vl < v2< .. .  <vK (6.28) 
P 

If the Prandl number (6.23) is strictly less than one then one must take 

D + 2 p O  
_ - (6.29) M,_ = G and v, 2 K 

Now define-the collision operator 

K 

C(F)  - vl( J l l  - F) + ~ (Vk-- Vk--])(.//Ck-- F) 
k = 2  

K - - I  

= ~ Vk(,//gk -- "//gk + 1) + VK(JIK-- F) (6.30) 
k = l  

As we shall see, this is the nonlinear analog of the diagonal approximation 
of Grad. 
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This modified collision operator satisfies all the requirements laid 
down in Section 2. This is seen most directly when it is expressed as 

K 

C#(F)= )-'. qk(Jgk--F) (6.31) 
k = l  

where ill = v 1 and I1, = Vk -- I"k--1 > 0 for k = 2 ..... K. That  1, v, and ]v[-' are 
locally conserved (2.3) by each term in the sum (6.31) is evident from 
(6.27). That this operator satisfies the local dissipation (2.6) can be seen 
from 

K 

( l o g F ~ ( F ) )  = ~ qk(log F(o#k-F)) 
k = l  

= r/k log (J/k--F) <~0 (6.32) 
k = l  

As each term of this last sum is nonpositive, the only way the sum can 
vanish is if each term vanishes. This will happen if and only if the k = 1 
term vanishes because in that case one must have F = g ,  which would 
imply all the other terms would also vanish. Hence, the H-theorem (2.8) is 
satisfied. From this one can argue that the only locally conserved quantities 
are those in IF, thereby establishing (2.4). Finally, the translational and 
rotational symmetries (2.115 follow for each term in the sum (6.31) from 
the fact that, being admissible, each Mk satisfies condition (II) of (4.2). 

The linear operator Le e defined by (2.14) can be computed from 
(6.30) as 

K 

L e e = v , ( J - ~ )  + Z ( v k - - v k - , ) ( J - - ~ k )  
k = 2  

K - - I  

= ~ V k ( ~ + , - - ~ ) + V r ( J - - ~ h - )  (6.33) 

where ~.  is the orthogonal projection onto Mk- in He ,  which is given by 

g = m r (  mk o~m if) - - l (  mk g g )  (6.34) 

It is evident from (6.33) that Lee is a bounded self-adjoint operator and 
over He  that its spectral decomposition is given by the last sum in (6.33). 
The nonzero eigenvalues of Lee are the Vk and their corresponding 
eigenspaces are Ek--Mk+~ G M~, the orthogonal complement of Mk in 
Mk+~, where we understand MK+I = M. The orthogonal projection onto 
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E k in H g is then ~ + t - ~ k .  From these observations it is clear that the 
pseudoinverse of ~ is 

K - - I  1 

k ~ 1 •k VK 

(6.35) 

Moreover, the components of the matrix A and vector B are eigenfunctions 
of &ae,. The inequalities in (6.21) are therefore equalities, and the correct 
Navier-Stokes behavior will be recovered. 

The linear space M =span{ l ,  v, v v v, [vl2v, Iv[ 4} generates the sim- 
plest such closure that recovers the correct Navier-Stokes approximation. 
The dimension of this space is (D + I ) ( D  +4)/2  in general, and is 14 for 
D = 3. One takes as the collision operator (6.24), for which one obtains 

o D+2pO 
s =P-- ( ~ -  ~,~) + - -  ( J -  ~ )  (6.36) 

/x 2 h 

where ~ is the orthogonal projection onto G =span{ 1, v, v v v} in H~ of 
the form (6.34). It can be shown that this agrees with the diagonal 
approximation of Grad for the 13 moment closure (4.5). More generally, 
s given by (6.33) has the form of a Grad diagonal approximation for a 
higher order moment closure. The problem of generally determining the 
relaxation rates vk in (6.33) is exactly the same one that Grad faced. One 
possibility is to choose them so as to match the Chapman-Enskog expan- 
sion to higher order than the Navier-Stokes correction. This remains to be 
done. 

Given some choice of the vk (hence, of the qk), the moment closure 
collisional relaxation term (4.14) can be evaluated as 

K 

r* (a ) - (mCg(J / / ( a ) ) )  = ~ qk(h*~(ak)-h*(a)) (6.37) 
k ~ l  

Similar to the problem we faced in the evaluation of the moment fluxes 
j*(a) in the moment system (4.16), the practical implementation of this 
expression requires only a differentiable evaluation of the scalar function h* 
in terms of a" Suppose that this can be done through a combination 
of asymptotics and numerics. Then, given a value of p, it follows from 
(6.27) that the values of the a k can be obtained numerically by solving the 
restricted minimization problem 

min {h*(a) -arp: a rm ~ 1~} (6.38) 
Q 
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This can be done by the same procedure used to solve the minimization 
problem (4.33) for a. The resulting ak can then be used in (6.37) to 
evaluate the collisional vector r*. Hence, the practical implementation of 
the collisional terms in (4.16) is no more difficult than that of the fluxes 
and is usually a good deal simpler, a fact illustrated by the explicit 
formulas that arise when using the collision operator (6.24). 

Finally, the dissipation properties of this r* may be seen directly from 
formula (6.37). Upon using (6.27b), one obtains 

K 
I l r r * ( ~ ) - =  2 tlkllT(h*~(~k )-h*a(ll)) 

k=l  
K 

= ~. Ilk(a--ak)T(h*(ak)--h*(a))<<,O (6.39) 
k ~ l  

which verifies the local dissipation relation (4.23) because the convexity of 
h* implies that each term of the last sum in (6.38) is nonpositive. Similarly, 
the H-theorem like equivalences (4.24) can be seen directly. Indeed, the 
only way the last sum can vanish is if each term vanishes. This will happen 
if and only if the k = 1 term vanishes because in that case one must have 
a = al ,  whereby arm  ~ ~_ and all the other terms would also vanish. Hence, 
the characterization of equilibria (4.24) is satisfied. 

7. GENERALIZATIONS 

The prescription of Sections 4 and 6 may be generalized to a wide 
class of kinetic equations. Consider a gas of particles such that the possible 
state p of a particle at a given location x takes on values in a set P. 
Associated with each state p e p  is a velocity v = v ( p ) e R  D, which is the 
velocity of a free particle in state p. At the kinetic level a gas is described 
by a nonnegative function F(t, x, p) that represents the density of particles 
with position x and state p in the single-particle phase space at time t. The 
evolution of F(t, x ,p)  is assumed to be governed by a kinetic equation of 
the form 

c~,F+ v. V, .F= g ( F )  (7.1) 

Here the interaction of particles through collisions is modeled by the 
operator ~' that acts locally (only on the p variable) and is generally non- 
linear. Indeed, it is a nonlinear operator acting on its domain ~ (~ ) ,  a sub- 
set of functions over P that take values in IR+. 

A map e = e(p) in R p is said to be a locally conserved quantity for the 
collision operator cg whenever 

( e r g ( f ) )  = 0 for every f e  ~ ( ~ )  (7.2) 
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The set of all conserved quantities of cg is a linear subspace of R p which 
is assumed to be nontrivial. Let E be the dimension of this space and 
{e;(p): 1 <~i<~E} a basis. Denote the vector-valued map from P to R E 
whose components are these basis vectors by g =  g(p). Vectors in R E will 
be denoted with arrows. Thus, e = e(p) is a locally conserved quantity for 
cg if and only if 

e=ffrg for some f f e R  E (7.3) 

The vector of locally conserved quantities g leads to a set of local conserva- 
tion laws, satisfied by every solution F=F(t, x,p) of the kinetic equation 
(7.1), that take the form 

O,(#F) +V, . .  (vgF) = 0  (7.4) 

Here ( g F )  and (vgF)  are called, respectively, the conserved densities and 
fluxes corresponding to g. 

The concepts of equilibria, conservation, and dissipation are then tied 
together by that of entropy. A map q=q(f)  over JR+ is called an entropy 
density for the collision operator g whenever 

(O.rq(f)cg(f)) <~0 forevery f e ~ ( ~ )  (7.5) 

and for every f e  ~ ( g )  the following are equivalent: 

(i) (OHl(f)~(f))=O 

(ii) g(./') = 0  (7.6) 

(iii) O rll(.f)=ff~ forsome ff~R e 

An entropy density is called convex if the map f~-+ q(f) is strictly convex 
with Orlq(f)>0. Requirement (7.6) merely abstracts some of the conse- 
quences of Boltzmann's celebrated H-theoremJ 7~ It states that the local 
equilibria of ~' are characterized by the vanishing of the entropy dissipation 
rate and are given by the class of densities determined by solving equation 
(iii) f o r f  Indeed, as will be shown below, the form of the local equilibria 
depends only on ~/and E, and is completely independent of all other details 
of the collisioq operator. 

For the classical kinetic theories of Section 2, the quantity q ( f ) =  
f l o g f - f  was an entropy density. Other examples of such entropy den- 
sities are 

q(f) = f l o g  f +  (1 - f )  log(1 - - f )  

q(f) = f log f - -  ( 1 + f )  log( 1 + f )  
(7.7) 
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which arise for gases that satisfy Fermi-Dirac or Bose-Einstien statistics, 
respectively. 

An entropy density q leads to a local dissipation law for solutions 
F=F(t, x, p) of the kinetic equation (7.1) 

O,(rl(F)) +V, . .  (vq(F)) = (OFll(F) C~(F)) <~0 (7.8) 

Here (rl(F)) and (vpl(F)) are called, respectively, the entropy density and 
entropy flux, while (Orrl(F) C~(F)) is called the entropy dissipation rate. 

Equation (iii) of (7.6) can be solved for the local equilibria in terms of 
the Legendre transform of q, which is denoted by r/*= q*(y) and is defined 
implicitly through the relations 

q*(y)+q(z)=-yz, y=O:pi(z) (7.9) 

The strict convexity of q ensures that the second equation above can be 
solved for z in terms of y, thus allowing the elimination of z from the first 
equation. It is easy to verify the dual nature of this transformation by using 
implicit differentiation to check that z =a:,q*(y); it is then clear from (7.9) 
that the Legendre transform of q* is again q. Hence, relation (iii) is equiv- 
alent to 

(iv) f=O,,lI*(ffrg) forsome ffcO~ E (7.10) 

The generalization of (4.8) is then 

+#(a) = a.vr/*(arm) for some ~zcR M (7.11) 

The corresponding density and flux potentials are given by 

h*(a) = ( q * ( a r m ) ) ,  j*(a)=(vTl*(aTm)) (7.12) 

Given this, the generalization of the moment closure prescription is 
straightforward. 

Remark .  Many kinetic equations admit more than one convex 
entropy density. Indeed, for linear kinetic equations it is often the case that 
any strictly convex function o f f  satisfies (7.6). In such cases the closures 
one obtains from different entropy densities can be quite different. 

8. D I S C U S S I O N  

The preceding theory should be considered as a starting point for 
further study. Three general avenues of investigation are evident: its practi- 
cal implementation, the nature of its approximations, and its mathematical 
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foundations. Without trying to be exhaustive, a number of questions 
related to these avenues are raised below. 

The biggest obstacle to a practical implementation of the above theory 
is the need for algorithms to efficiently evaluate the density potential h*, 
defined in (4.13), and two of its derivatives as functions of a. The large 
number of independent variables would seem to make tabular approaches 
too storage-intensive to be practical. However, one approach might be to 
approximate the integrals in (4.13) with discrete-velocity quadratures that 
are designed so as to recover exact expressions when .~#(a) reduces to a 
Gaussian. Given a realizable value of p, the corresponding values of a and 
h(p) can then be obtained numerically by iteratively solving the minimiza- 
tion problem (4.33) using a nonlinear conjugate gradient method. Care 
must be taken to ensure that each iterate remains within the cone M~. over 
which h* takes on finite values. This is a particularly important point 
because the Maxwellians themselves are realized on the boundary of M,. for 
closures of higher order than Gaussian. Because h*(a) approaches + oo as 
a approaches any point on the boundary of M,. that is not in M c, it is 
easily seen that h* is not continuous at a Maxwellian. However, it is also 
true that at a Maxwellian h* possesses one-sided derivatives of all orders 
in directions interior to Me, the first two of which are given by formulas 
(4.15) and (4.17). The conjugate gradient method should use the quad- 
rature approximation to these formulas. Convergence should be rather fast, 
given a good initial guess for a provided by, for example, its value at the 
previous timestep. If no minimum is found, then the given value of p was 
not realizable and a new one should be computed with a smaller timestep. 
Such a method has yet to be fully implemented. 

The symmetric hyperbolic structure of the moment equations evident 
in (4.16) lends itself to the practical implementation of generalized 
Godunov numerical schemes. Such schemes require the development of 
good approximate Riemann solvers. This might be achieved rather cheaply 
given a quadrature approximation such as those described in the last 
paragraph. One simply computes the flux at a given interface as the dif- 
ference of the appropriate one-way fluxes of the-states on either side, where 
the one-way fluxes are computed by quadrature over those velocities flow- 
ing toward the interface. This approach would be most natural for a 
Lagrangian implementation where the underlying quadrature set would be 
naturally centered on the interface. Such an approximate Riemann solver is 
much more dissipative than an exact one. Its usefulness needs to be tested. 

A detailed analysis of the hyperbolic structure of the 35-moment 
closure (all moments up to fourth order in three dimensions) has recently 
been carried out by Gombosi et  al. ~'5~ They found a remarkable factoriza- 
tion of the characteristic polynomial of the system with slab symmetry in 
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the near-Gaussian approximation and proceeded to classify all the charac- 
teristic velocities as either genuinely nonlinear or linearly degenerate. Such 
knowledge is needed to build more sophisticated approximate Riemann 
solvers. 

It should be remarked that care must be taken in differencing the 
moment equations so as to recover the correct Navier-Stokes behavior in 
the fluid dynamical regime. ~241 This is because that behavior results from 
asymptotic balances in the moment equations for small mean free path that 
must be maintained by the numerical approximation. Algorithms naively 
based on splitting the convective and collisional terms will generally not 
work. Approaches that address this problem are found in ref. 24 and 
references therein. 

Practical implementation of the above theory also requires the 
specification of boundary conditions. Of course, reflecting boundary condi- 
tions are easily imposed. Moreover, one can also impose in-flow or out- 
flow boundary conditions by simply specifying an external state and deter- 
mining the flux at the boundary by (approximately) solving the Riemann 
problem. This is exactly what most Euler simulations do now. It is not 
clear that this treatment gives the correct boundary conditions in the 
Navier-Stokes approximation. The development of more sophisticated 
boundary conditions based on asymptotic boundary layer analyses requires 
a perturbative reformulation of the systematics presented here. This is 
being explored for the Gaussian closure in ref. 19. 

Questions regarding the nature of the approximations in the above 
theory fall into two general areas--namely, those relating to the modifica- 
tion of the collision operator given by (6.31) and those relating to the form 
of .~#(a) given by (4,10). The most basic question regarding the collisional 
approximation is the validity of replacing the true collision operator with 
a generalized BGK operator of the form (6.31). This question should be 
investigated in the context of Maxwell molecules. In that case the lineariza- 
tions about a Maxwellian of both the Boltzmann collision operator and its 
generalized BGK approximation are diagonal with respect to the Hermite 
polynomials, and can therefore be made to agree rather well by a proper 
choice of the eigenvalues Vk in (6.33). One can then focus on the 
approximation in the transition regime. For more general molecules it is 
clear that the nature of the approximation is more violent even near a local 
equilibrium. In that case one could hope that the vk could be systematically 
chosen so as to, for example, match terms in the corresponding Burnett 
and super-Burnett equations. 

The closure strategy does not depend on the specific form of the 
modified collision operator proposed in (6.31). Other forms that satisfy the 
general properties put forth in Section 2 should also be considered, 
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although it is not clear what those forms might be. For  example, if 
operators of the form (6.31) work well near local equilibria but not so well 
in the transition regime, then one could, consider allowing the Plk to be 
functionally dependent on more than just p and 0. On the other hand, if 
the form (6.31) does not work well near local equilibria, then a more 
dramatic revision is needed. 

Deeper questions exist regarding the justification for the chosen form 
of J / ( a )  given by (4.10). This choice was guided only by entropy dissipa- 
tion and conservation properties; no other knowledge about the dynamics 
was used. In particular, the specific form of the entropy dissipation rate 
(2.6) was not used. It would be natural to consider the role this functional 
might play in an alternative closure strategy. 

Finally, we turn to the mathematical foundations of the above theory. 
Of course, being a symmetric hyperbolic system, the moment equations 
inherit a local existence theory of classical solutions for initial data in the 
Sobolev space H" for any s > D/2 +1 (for example, see refs. 25 and 30). 
One question to be addressed is whether the presence of collisional terms 
allows one to establish global existence for classical solutions that are close 
to a homogeneous equilibrium, t~ Within the context of classical solutions, 
one could also try to establish the validity of fluid dynamical approxima- 
tionsJ 21 A natural question also arises as to the sense in which solutions of 
the hierarchy of moment equations approximate a solution of, say, the 
Boltzmann equation. While it may be that one could prove something in 
this direction, given our limited knowledge of classical solutions for the 
Boltzmann equation, such a result could prove to be a bit academic. 

Any theory of global weak solutions for the moment equations would 
contain such a theory for the Euler equations of gas dynamics as a special 
case. Because the latter question is open, so is the former; however, they 
are likely of equal difficulty. Of course, given such a result, it is then 
natural to ask the sense in which weak solutions of the hierarchy of 
moment equations approximate DiPerna-Lions solutions of the Boltzmann 
equation. Fluid dynamical limits should be reexamined in this context, too. 

A less ambitious program would be to investigate special solutions to 
the moment equations. The most important example of such would be the 
shock profile. For  the weak shock profile one should at least be able to 
prove what is.known for the Boltzmann equation. On the other hand, the 
existence of the strong shock profile is an open problem for the Boltzmann 
equation that may be more tractable for the moment equations because 
there it reduces to a question, albeit nontrival, about ordinary differential 
equations. Indeed, while the entropy flux acts as a formal Lyapunov func- 
tion for those equations, it is not bounded from below. Therefore, any 
result on the existence of the strong shock profile would be interesting. 
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